Other Coverage Modifications

Coinsurance \alpha is the fraction of losses covered by the policy.  For example, \alpha = 0.8 means if a loss is incurred, 80% will be paid by the insurance company.  A claims limit u is the maximum amount that will be paid.  The order in which coinsurance, claims limits, and deductibles is applied to a loss is important and will be specified by the problem.  The expected payment per loss when all three are present in a policy is given by

E\left[Y\right] = \alpha \left[E\left[X\wedge u\right] - E\left[X \wedge d\right]\right]

where Y is the payment variable and X is the original loss variable.  The second moment is given by

E\left[Y^2\right] = \alpha^2\left(E\left[(X\wedge u)^2\right] - E\left[(X \wedge d)^2\right]-2d\left(E\left[X \wedge u\right]-E\left[X \wedge d\right]\right)\right)

The second moment can be used to find the variance of payment per loss.  If inflation r is present, multiply the second moment by (1+r)^2 and divide u and d by (1+r).   For payment per payments, divide the expected values by P(X>d) or 1-F(d).

Advertisements

Leave a comment

Filed under Coinsurance, Coverage Modifications, Deductibles, Limits

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s