Tag Archives: Central Limit Theorem

Normal Approximation

If a random variable Y is normal, you can map it to a standard normal distribution X (useful for finding probabilities in the standard normal table) by the following relationship:

Y = \mu_y + \sigma_yX

Example 1:  Y is normal.  E[Y] = 100 and Var(Y) = 49  Then

\begin{array}{rl} P(Y \leq 111.515) &= P(X \leq \frac{111.515 - 100}{\sqrt{49}}) \\ &= P(X \leq 1.645) \\ &= 0.95 \end{array}

Example 2:  Y has the same distribution as example 1.  Then P(Y \leq y) = 0.9 implies 

P(X \leq \frac{y - 100}{\sqrt{49}}) = 0.9

Which implies:

\frac{y - 100}{\sqrt{49}} = 0.8159

Hence y = 105.7113.

With regard to Central Limit Theorem:

By the Central Limit Theorem, the distribution of a sum of iid random variables converges to a normal distribution as the number of iid random variables increases.  This means that if the number of iid random variables is sufficiently large, we can get approximate probabilities by using a normal distribution approximation.



Leave a comment

Filed under Probability